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In¯ uence of dimerization on the nematic± isotropic phase

transition in strongly polar liquid crystals

A. V. EMELYANENKO
Department of Physics, Moscow State University, Moscow 117234, Russia

and M. A. OSIPOV*
Institute of Crystallography, Russian Academy of Sciences, Leninski pr. 59,

Moscow 117333, Russia
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A molecular theory of the nematic± isotropic phase transition is developed for the ¯ uid
composed of rod-like particles with large longitudinal dipoles. The equilibrium between the
monomers and dimers with antiparallel dipoles is explicitly taken into account and the
concentration of dimers is determined self-consistently together with the nematic order
parameters. We show that for small central dipole moments the nematic± isotropic transition
temperature increases with the increasing dipole. This is in accordance with the results of
previous approaches. By contrast, for large values of the dipole the transition temperature
decreases due to the growing concentration of dimers. This result enables one to explain the
results of recent computer simulations that reveal a destabilization of the nematic phase in a
system of hard rods with large central longitudinal dipoles. The temperature variation of the
concentration of dimers is also analysed and the sign of the concentration discontinuity at
the transition point is correlated with the qualitative in¯ uence of dimers on the transition
temperature.

1. Introduction [8, 9]. Such behaviour of the transition temperatures is
Many nematic liquid crystals are composed of polar generally not observed in mixtures of non-polar nematics.

or even strongly polar molecules. Permanent dipoles Permanent molecular dipoles play a more important
are used to optimize the electro-optic and rheological role in smectic phases. Strongly polar mesogens can
properties of liquid crystalline materials and also to form re-entrant nematic and smectic phases, ferroelectric
increase their chemical stability. Physical properties of tilted smectic phases and various modulated smectic
polar liquid crystals are known to di� er signi® cantly structures.
from those of non-polar liquid crystals. In particular, On the microscopic level, strongly polar liquid
strongly polar liquid crystals can form re-entrant, incom- crystals are characterized by a formation of dimers with
mensurate and other complex smectic phases (see, for antiparallel dipoles. The existence of dimers has been con-
example, [1± 6]). ® rmed both by X-ray [10± 12] and dielectric measure-

In the nematic phase, the in¯ uence of molecular ments [13, 14]. These dimers should not strictly
dipoles is not so pronounced. However, there exist speaking be considered as stable particles, of course, and
some experimental data on the in¯ uence of molecular one ® nds a dynamical equilibrium between dimers and
polarity on the nematic± isotropic transition temperature. monomers in the nematic phases. The coexistence of
For example, some experimental data indicate that the dimers and monomers is an important feature of strongly
nematic± isotropic transition temperature is increased polar nematics and it should be taken into account in a
when a non-polar terminal group is substituted for a consistent molecular theory of the nematic± isotropic
polar one [7]. Interesting e� ects are also observed in phase transition.
mixtures of polar and non-polar nematics, where the Several theoretical studies of the in¯ uence of permanent
transition temperature appears to be a strongly non- molecular dipoles on the nematic± isotropic transition have
linear function of the molar fractions of the components been reported [15± 18]. Most of them refer to a system

of hard spherocylinders or ellipsoids with permanent
dipoles. We note that in such systems the N± I phase*Author for correspondence.
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188 A. V. Emelyanenko and M. A. Osipov

transition is actually induced by a change of concen- In general there are two ways to solve this problem.
tration of hard particles, while the temperature only One is to use some resummation technique for the
scales the value of the reduced dipole. The results of the diverging series. This method, however, appears to be
recent studies by Vanakaras and Photinos [16] and very complex in the case of anisotropic ¯ uids. The second
Vega and Lago [17] suggest that central dipoles stabilize way is to take into account explicitly the dynamical
the nematic phase. The same qualitative result has been equilibrium between monomers and dimers. In this
obtained by Osipov and Simonov [18] in the study of way the minimum energy con® gurations (that actually
polar thermotropic nematics. Within the two-particle cause formal di� culties) are accounted for separately by
cluster approximation, the N± I transition temperature calculating the equilibrium concentration of dimers.
rapidly grows with the increasing value of the molecular In this paper we follow the second strategy for the case
dipole [18]. These results, however, appear to be in con- of thermotropic nematics and analyse the dependence
tradiction with the results of recent computer simulations of the N± I transition temperature on the value of the
[19± 21]. These simulations show some destabilization dipole using a Maier± Saupe type model which accounts
of the nematic phase [19, 20] or do not reveal any for an equilibrium between dimers and monomers. The
in¯ uence of central dipoles on the N± I transition [21]. attractive interaction between monomers and dimers is
In particular, McGrother et al. [19] have found that evaluated using the site± site interaction potential. We
central longitudinal dipoles, added to non-polar hard show that for small dipoles the transition temperature
spherocylinders, shift the N± I transition to higher is indeed a growing function of the dipole strength. By
densities at all temperatures. By contrast, the smectic A contrast, in the case of large dipoles, the transition
phase is stabilized with respect to the nematic phase for temperature decreases with increasing dipole because the
a system with central longitudinal dipoles. dimers appear to be less mesogenic than the monomers.

The discrepancy between the statistical theory and The paper is arranged as follows. In §2 we develop
computer simulations can be attributed to an insu� cient the statistical theory of the nematic± isotropic transition
accuracy of the theory. We note that there is no straight- taking into account the dimer± monomer equilibrium
forward way to take into account dipole± dipole inter- and obtain a system of equations for the order para-
actions consistently in the statistical theory of nematic meters and for the molar fraction of monomers. In §3
liquid crystals. The nematic phase is non-polar and we consider the contributions from the dipole± dipole
therefore the average dipole± dipole interaction potential and dispersion interactions between monomers and
must vanish. Thus, the dipole± dipole interaction does dimers and in §4 we present the results and discussion.
not contribute directly to the average molecular ® eld in Finally, in Appendix A the e� ective bond energy of thethe nematic phase. On the other hand, large permanent dimer is estimated and in Appendix B the parameters ofdipoles promote strong short range dipole± dipole

the dispersion interaction potential are calculated in thecorrelations that can a� ect thermodynamic parameters
context of the site± site interaction model.of the N± I transition.

The existing statistical theories of polar nematics
are based on scaled [16] or unscaled [15] formulation

2. Statistical theory of nematic ordering in the ¯ uidof the Onsager theory or on the two-particle cluster
composed of monomers and dimersapproximation for a lattice model [17]. Thus some

In this paper we consider a nematic liquid crystalshort range orientational correlations are taken into
composed of strongly polar molecules, a mixture ofaccount in these approaches and the results are expected
monomers and dimers with the number densities r1 andto be correct at least for small values of the dipole.
r2 , respectively. In the nematic phase the monomers andHowever, in the case of large dipoles the situation can
dimers are also characterized by the orientational distri-be qualitatively di� erent because very strong correlations
bution functions f

(1) ((an)) and f
(2) ((an)), where the unitcan lead to the formation of dimers.

vector a is in the direction of the molecular long axis.In the Onsager theory, the free energy depends mainly
The monomer particles are assumed to be uniaxial.on the second virial coe� cient. In the case of large

At the same time, the dimers are biaxial and theirdipoles the value of this coe� cient is approximately
orientation is speci® ed both by the unit vector a in thedetermined by the large factor exp(d 2

/kT R
3
0 )&1, where

direction of the long axis and by the unit vector b inR0 is the minimal approach for the two molecules.
the direction of the short axis; (a ¯ b)= 0.Higher order virial coe� cients also contain this large

The free energy of such mixture is a functional of thefactor. Moreover, with increasing dipole moment they
densities r i (a)= f

( i) ((an))r i , where i = 1, 2. Taking intogrow faster than the second virial coe� cient and, as a
account only direct pair correlations between particles,result, any series based on the virial expansion may

diverge. the free energy of the mixture of monomers and dimers
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189In¯ uence of dimerization on N± I transition

can be written as [22]: model of a polar molecule [19, 20] that is represented
by a spherocylinder with the central longitudinal dipole.
For su� ciently long spherocylinders the dimer is com-W

N kT V
F = P r1 (a1 ){ln[r1 (a1 )L

3 ] Õ 1} d2
a1

posed of two parallel monomers, located side by side, with
antiparallel dipoles. The bond energy of such a dimer is
related to the value of the dipole± dipole interaction+ P r2 (a1 ){ln[r2 (a1 )L

3 ] Õ 1} d2
a1

energy in this antiparallel con® guration. This energy is
equal to Õ k (d * )2, where d * = d / (kD

3 )1/2 is the reduced
Õ

1

2 P r1 (a1 )r1 (a2 )C11 (1 , 2 ) d2
a1 d3

R12 d2
a2 molecular dipole. We note that the e� ective bond energy

(2) includes also a contribution from thermal ¯ uctuations
[23]. The value of E 0 is calculated approximately in

Õ P r1 (a1 )r2 (a2 )C 12 (1, 2 ) d2
a1 d3

R12 d2
a2 Appendix A. The result is:

Õ
1

2 P r2 (a1 )r2 (a2 )C22 (1 , 2 ) d2
a1 d3

R12 d2
a2 E =

2p
2
WD

3

3V Sp

3
(d * / Ó T )Õ

5 exp (d * / Ó T )
2 (4)

Õ r2
E0

kT
(1) where the dimensionless parameter E is related to the

bond energy E0 as
where N is the number of molecules, V is the volume of
a molecule, W = r0 V is the volume fraction of molecules, E ; rL

3 exp(E 0 /kT ).

L is the de Broglie thermal wavelength, R12 is the inter-
molecular vector and C ij (1, 2) (i, j= 1, 2) are the e� ective The free energy (1) is a functional of the two densities
direct correlation functions, averaged over the orientations r1 and r2 . These densities, however, are not independent
of molecular short axes. The function C 11 (1, 2) describes because the total density of molecules (which can exist
the direct correlations between two monomer particles, independently as monomers or form dimers) is preserved.
the function C 22 (1, 2) is the same for two dimers and This is represented by the following conservation law:
® nally the function C 12 (1, 2) is the direct correlation
function between monomers and dimers. P [r1 (a)+2r2 (a)] d2

a = r0 (5)The last term in equation (1) describes the internal
energy of the dimers. Here E0 is the bond energy of the
dimer formation that is related to the minimum value where r0 is the total number density.
of the interaction energy between the molecules. The Now we obtain the system of equations for r1 and
dimer energy is approximately given by:

r2 by minimization of the free energy (1) under the
constraint (5):

E 0 = lnG 1

4pL
3 P H (R12 Õ j12 )

Ö CexpA Õ
U dd (1 , 2 )

kT B Õ 1Dd2
a1 d3

R12 d2
a2 H

(2) Gln r1 (a1 ) Õ P r1 (a2 )C 11 (1, 2 ) d3
R12 d2

a2

Õ P r2 (a2 )C12 (1 , 2 ) d3
R12 d2

a2 = l*

ln r2 (a1 ) Õ P r2 (a2 )C 22 (1, 2 ) d3
R12 d2

a2

Õ P r1 (a2 )C12 (1 , 2 ) d3
R12 d2

a2 Õ lnC E

rL
3 D= 2l*

where H (R12 Õ j) is a step-function that describes the
steric cut-o� . H (R12 Õ j)= 0 if the molecules penetrate
each other and H (R12 Õ j)= 1 otherwise. The potential
U dd (1, 2) is the dipole± dipole interaction energy:

U dd (1, 2 )=
1

R
3
12 Cd1 d2 Õ

3 (d1 R12 )(d2 R12 )

R
2
12 D (3) (6)

where the parameter l* can be determined fromwhere d is the molecular dipole.
For large values of the dipole, the e� ective bond energy equation (5).

From equations (6) one readily obtains the followingE0 is mainly determined by the energy of dipole± dipole
interaction in the most probable con® guration of the two equations for the orientational distribution functions

f
(1) (a ¯ n) and f

(2) (a ¯ n) of monomers and dimers,polar molecules. In this paper we consider the simple
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190 A. V. Emelyanenko and M. A. Osipov

respectively. a monomer± dimer equilibrium. The familiar Maier±
Saupe equation for the one particle orientation distri-
bution function can be obtained from equations (7) by
simultaneously putting p = 1 and E 0 = 0 and using (11).

Equations (7) are the integral equations for the
orientational distribution functions of the monomersGp f

(1)
(a1 ¯ n)

= l expGÕ pA 11 ((a1 ¯ n)) Õ
1 Õ p

2
A 12 ((a1 ¯ n))H

1 Õ p

2
f

(2)
(a1 ¯ n)

= El
2 expGÕ pA 12 ((a1 ¯ n)) Õ

1 Õ p

2
A 22 ((a1 ¯ n))H

and dimers. In the spirit of the generalized Maier± Saupe
theory [22], one can obtain approximate expressions
for the nematic order parameters S1 and S2 of monomers
and dimers. For this purpose we expand the e� ective
one particle potentials A ij ((an)) in Legendre polynomials
and retain the ® rst two terms:(7)

A ij ((a1 n))= A
ij
0 +A

ij
2 Sj P2 ((a1 n))+ ¼ (13)

where p = r1 /r0 is the molar fraction of monomers, and
Multiplying equations (7) by P2 ((a1 ¯ n)), integrating overthe quantities A ij (i, j = 1, 2) are the e� ective one particle
a1 and b1 and using the approximation (13) one obtainspotentials:
the ® nal equations for the order parameters S1 and S2

A ij ((a1 ¯ n)) and the monomer molar fraction p :

= Õ
W

V P f
(j )

(a2 ¯ n)C ij (a1 , R12 , a2 ) d3
R12 d2

a2 (8)

and where l= exp l* /rL
3.

Equations (7) depend on the parameter l that is yet
undetermined. The equation for l can be obtained
by integration of both equations (7) over a1 . After
summation of the integrated equations one obtains a GS1=

1

I
a
1 P

1

Õ
1

P2 (x )

Ö expGÕ CA
11
2 pS1 +A

12
2

1 Õ p

2
S2DP2 (x )Hdx

S2=
1

I
a
2 P

1

Õ
1

P 2 (x )

Ö expGÕ CA
12
2 pS1 +A

22
2

1 Õ p

2
S2DP 2 (x )Hdx

p =
(I

2
1 +8EI2 )

1/2 Õ I 1

4EI 2
I 1

quadratic equation:

I 1 l+2I 2 El
2 = 1 (9)

where

I 1 = P expGÕ pA 11 Õ
1 Õ p

2
A 12 Hd2

a1

(14)

I 2 = P expGÕ
1 Õ p

2
A 22 Õ pA 21 Hd2

a1 . (10) where

We note that the parameter l is simply related to the I
a
1 = P 1

Õ
1

expGÕ CA
11
2 pS1 +A

12
2

1 Õ p

2
S2 DP 2 (x )Hdx

molar fraction of the monomers p . Integration of both
sides of the ® rst equation (7) yields the relation (15)

p = lI 1 . (11)
I

a
2 = P 1

Õ
1

expGÕ CA
12
2 pS1 +A

22
2

1 Õ p

2
S2 DP 2 (x )Hdx

The parameter l is given by the positive root of
equation (9): (16)

l=
(I

2
1 +8EI2 )

1/2 Õ I 1

4EI 2 I 1 = I
a
1 expGÕ A

11
0 p Õ A

12
0

1 Õ p

2 H
and therefore the monomer molar fraction can be
expressed as I 2 = I

a
2 expGÕ A

12
0 p Õ A

22
0

1 Õ p

2 H. (17)

p =
(I

2
1 +8EI 2 )

1/2 Õ I 1

4EI2
I 1 . (12) The coupled system of equations (14) describe the

temperature dependence of the order parameters and
the monomer molar fraction in the nematic phase withWe note that equations (7) represent a generalization of

the Maier± Saupe theory to the case of a nematic with monomer± dimer equilibrium. The temperature Tc of the
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191In¯ uence of dimerization on N± I transition

® rst order nematic± isotropic transition can be found molecules penetrate each other and H (R12 Õ j12 )= 1
otherwise.using an explicit expression for the free energy of the

system. The general expression for the free energy is In this paper we consider anisotropic dispersion and
dipole± dipole electrostatic interactions between monomers.given by equation (1). Substituting equations (7) into

(1) and using the approximation (13), one obtains the A dimer composed of two monomers possesses also an
e� ective quadrupole and thus dipole± quadrupole andfollowing expression for the free energy density of the

nematic phase: quadrupole± quadrupole interactions are also present in
the system. However, these interactions are too short
range and relatively weak, and we will not take themF

N kT
=

1

2
(A

11
0 +A

11
2 S

2
1 )p

2
W

into account in the ® rst approximation.
Thus the interaction between monomers can be

written in the form:+
1

2
(A

22
0 +A

22
2 S

2
1 )A1 Õ p

2 B
2

W

U 11 (1 , 2 )= U
disp
11 (1 , 2 )+U

dd
11 (1, 2 ) (20)

+ (A
12
0 +A

12
2 S1 S2 )p

1 Õ p

2
W where U

disp
11 (1, 2) is the dispersion interaction energy

and U
dd
11 (1, 2) is the dipole± dipole potential.

We note that the electrostatic interaction potential
vanishes after averaging in equations (8) because the

+p ln
p

I 1
+

1 Õ p

2
ln A1 Õ p

2 B
EI 2

Õ
1 +p

2
+ ln

L
3
W

V
. nematic phase is non-polar. Thus the dipole± dipole

interaction does not contribute to the free energy in the
mean-® eld approximation. This approximation can be(18)
improved by taking the dipole± dipole interaction into

We note that equations (14) can also be obtained by a account in the framework of the second order perturbation
direct minimization of the free energy (18) with respect theory. In this case the three direct correlation functions
to S1 , S2 and p . between monomers and dimers are approximated as:

The free energy (18) and the equations (14) contain
the parameters A

ij
0, 2 which depend on temperature and

on the molecular structure. These coe� cients are the
corresponding moments of the direct correlation functions
C ij (1, 2) and remain undetermined in the context of the
general theory presented in this section. Further progress GC 11 (1, 2 )= Õ H (R12 Õ j12 )

Ö C 1

kT
U 11 (1, 2 ) Õ

1

2 A 1

kT
U

dd
11 B

2 D
C 12 (1, 2 )= Õ H (R12 Õ j12 )

1

kT
U 12 (1, 2 )

C 22 (1, 2 )= Õ H (R12 Õ j12 )
1

kT
U 22 (1, 2 )

can be achieved by using some approximation for the
direct correlation functions that enables one to separate
the e� ects of the non-polar dispersion interaction and
the dipole± dipole interaction between molecules. This
development is performed in the following section.

(21)

In the equations (21) the dispersion interaction is3. Dipole± dipole and dispersion interactions between
taken into account in the mean-® eld approximationmonomers and dimers
and the dipole± dipole interaction between monomers isThe equations for the order parameters S1 and S2
treated by a second order perturbation theory. We haveand the monomer fraction p can be solved numerically
also neglected the dipole± quadrupole and quadrupole±provided the coe� cients A

ij
0 and A

ij
2 are known. As

quadrupole interactions betweeen a monomer and amentioned in the previous section, these coe� cients are
dimer and between dimers, respectively.the moments of the e� ective direct correlation function

The quantity A 11 separates into the dispersion andC ij (1, 2).
dipole± dipole contributions:The function C ij (1, 2) has a simple analytical form in

the generalized mean-® eld approximation: A11 = A
disp
11 +A

es
11 (22)

where the quantities A
disp
ij are expanded in a Legendre

C ij (1 , 2 )= Õ H (R12 Õ j12 )
U ij (1 , 2 )

kT
(19) series similar to equation (13):

A
disp
ij = J

ij
0 +J

ij
2 Sj P 2 ((a1 ¯ n))+ ¼ (23)where U ij (1, 2) is the intermolecular interaction potential

and the step-function H (R12 Õ j12 ) represents the excluded In this paper we are mainly interested in the in¯ uence
of molecular dipoles on the nematic± isotropic phasevolume e� ects. The function H (R12 Õ j12 )= 0 if the two
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192 A. V. Emelyanenko and M. A. Osipov

transition. Thus, we start with the explicit evaluation of Here Def f is the e� ective diameter of the spherocylinder
which is taken to be slightly larger then the actualthe contribution from the dipole± dipole interaction to

the coe� cient A
es
11 . We now start to expand the dipole± diameter D in order to exclude the close con® guration

in which the two monomers already form a dimer. Indipole contribution in Legendre polynomials [similar to
equation (13)] and retain the ® rst two terms: actual calculations we put Def f = 1.62D.

Now we consider the ® ve coe� cients a, b1 , b2 , c and
d in equations (27), (28) as free parameters and requireA

es
11 = Õ

W

2V (kT )
2 P f

(1)
(a2 )H (R12 Õ j12 )

that equation (26) for j Õ
3

12 should yield the exact result
for the following ® ve relative orientations and positionsÖ [U

dd
ij (1, 2 )]2 d3

R12 d2
a2

of the two molecules, presented in ® gure 1.
= J

es
0 +J

es
2 S1 P2 ((a1 ¯ n))+ ¼ (24) The explicit expressions for the dimensionless quantity

X n= j Õ
3

12 D
3 in these ® ve cases are presented in table 1,where the dipole± dipole potential is given by equation (3).

where q = L /Def f is the e� ective axial ratio. UsingFor this purpose let us ® rst consider the integral
the values of X n presented in table 1, one obtains theover the intermolecular vector R12 in equation (24).
following expressions for the coe� cients in equationsThe integral over the absolute value R 12 can be taken
(27), (28):explicitly and one obtains:

A
es
11 =

Wd
4

6V (kT )
2 P f

(1)
(a2 ¯ n)[ (a1 ¯ a2 ) Õ 3 (a1 ¯ u)(a2 ¯ u)]2

Ö j Õ
3

12 (a1 , u , a2 ) d2
u d2

a2 (25)

where u = R12 / |R 12 |.
In equation (25) the distance of minimum approach G a=

2

9 G2 +
1

2
q Õ

3+2 [ (q +1 )/2 ] Õ
3 H

b1 =
2

9
{ Õ 2 +q Õ

3 +[(q +1 )/2 ] Õ
3
}

b2 =
2

9
{ Õ 2 +q Õ

3 +[(q +1 )/2 ] Õ
3
}

c =
2

9
{1 +q Õ

3 Õ 2 [ (q +1 )/2 ] Õ
3
}

d =
2

9
{1 +q Õ

3 Õ 2 [ (q +1 )/2 ] Õ
3
}

(29)for the centres of the two molecules j Õ
3

12 (a1 , u, a2 ) depends
on the relative orientation of the molecules in contact.
The function j12 cannot be calculated analytically
for spherocylinders but it is possible to evaluate it
using an interpolation expression following the idea of
van der Meer and Vertogen [24]. The corresponding
interpolation expression can be obtained in the following
way.

Equations (24) and (27)± (29) specify the contri-Firstly we expand the quantity j Õ
3

12 in a complete set
bution from the electrostatic dipole± dipole interactionof spherical invariants [25] and retain the ® rst few

terms:

j Õ
3 = D Õ

3
ef f Ca+b1 P2 (a1 u)+b2 P2 (a2 u)+ cP2 (a1 a2 )

+d A9

2
(a1 u)(a2 u)(a1 a2 ) Õ

3

2
(a1 u)

2 Õ
3

2
(a2 u)

2

Figure 1. Five relative orientations of the two spherocylinders
used in the calculation of the coe� cients in equation (27).

Õ
3

2
(a1 a2 )

2 +1BD . (26)

Table 1. Explicit expressions for the dimensionless quantities
X n = j Õ

3
12 D

3 [see equation (25) ] calculated for the ® veSubstituting equation (26) into (25) one obtains the
relative orientations of the two spherocylinders presentedfollowing expression for the coe� cients J

es
0 and J

es
2 .

in ® gure 1. Here q is the e� ective axial ratio of the
spherocylinder.

J
es
0 =

4

9
p

WD
3
ef f

V

(d * )
4

T
2 Aa+

1

5
b1 +

1

5
b2 +

1

25
c Õ

1

25
dB Position (n) X i

(27) 1 1
2 q Õ

3

3 1J
es
2 =

4

9
p

WD
3
ef f

V

(d * )
4

T
2 A1

5
a+

1

7
b1 +

1

7
b2 +

37

35
c +

101

245
dB .

4 [(q +1)/2] Õ 3

5 [(q +1)/2] Õ 3

(28)
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193In¯ uence of dimerization on N± I transition

between monomers to the e� ective one particle potentials where the parameters J
es
0 , J

es
2 are given by equations

(27)± (29) and the numerical values of the parametersA
ij ((a ¯ n)). The corresponding contribution from the

dispersion interaction is given by the expansion (23) J
ij
0 , J

ij
2 are presented in table 2. The results of a numerical

solution of equations (14) are discussed in the followingwhere the parameters J
11
0 and J

11
2 can be determined

using a model for the dispersion interaction between section.
monomers. We note that the dispersion interaction
between two particles can be parametrized in several 4. Results and discussion
di� erent ways. At the same time it is much more di� cult The equations (14) can be solved numerically to
to estimate the dispersion interaction between a mono- obtain the temperature variation of the order parameters
mer and a dimer or between two dimers without using S1 and S2 and of the monomer fraction p . From these
additional model parameters. In this paper we address equations one can also determine the dependence of
this problem in the following way. We consider a simple the nematic± isotropic phase transition temperature on the
model of the rod-like molecule composed of ® ve inter- absolute value of the molecular dipole. The dependence
action sites of diameter D . Any two interaction sites that

TNI on the reduced dipole d * is plotted in ® gure 3. One
belong to di� erent molecules are assumed to interact via can see that for small dipoles the transition temperature
the Lennard± Jones potential with the energy constant is a growing function of the dipole moment d * . This
e0 . Now the dimer is composed of 10 interaction sites result is in accordance with the results of the previous
(see ® gure 2) and thus the total interaction between the study [18]. The growth of the transition temperature
dimer and a monomer can be calculated in a straight- in this domain is mainly determined by the increasing
forward way. The actual calculations can be performed e� ective orientational interaction between monomers
only numerically and the corresponding results are due to the growing e� ective attraction caused by
obtained in Appendix B. The numerical values of the dipole± dipole interaction.
parameters J

12
0 and J

12
2 of the interaction potential At the same time, one can see that for large dipoles

between a monomer and a dimer and the corresponding the transition temperature decreases with the increasing
parameters J

22
0 and J

22
2 for the pair of dimers are dipole moment. This tendency is obviously related to

presented in table 2 for e0 /k = 5350 K, where e0 is the the increase in the concentration of dimers. We note
energy constant in the Lennard± Jones potential. that for the case of molecules with central longitudinal

Now we have determined all coe� cients A
ij
0 and A

ij
2 dipoles, dimers possess a lower axial ratio than mono-

in equations (14)± (17) in terms of the dipole strength, mers and the remaining electrostatic interaction between
molecular axial ratio, volume fraction and temperature. dimers is also weak. Therefore the dimers are expected
These coe� cients can ® nally be written as: to be less mesogenic than monomers when dipole± dipole

interaction between monomers becomes large enough.GA
11
0, 2 = J

11
0, 2 +J

es
0, 2

A
12
0, 2 = J

12
0, 2

A
22
0, 2 = J

22
0, 2

(30)

(a) (b)

Figure 2. Simple model for a monomer and a dimer composed
of several interaction sites.

Table 2. Numerical values of the dimensionless coe� cients
JÄ

ij
0 = T J

ij
0 and JÄ

ij
2 = T J

ij
2 which determine the dispersion

interaction potential between a monomer and a dimer
and between two dimers in the context of the site± site
interaction model.

Figure 3. Variation of the nematic± isotropic transition temper-
ature with the growing dimensionless molecular dipoleJÄ

11
0 JÄ

12
0 JÄ

22
0 JÄ

11
2 JÄ

12
2 JÄ

22
2

moment d*. The dashed curve presents the variation of
the transition temperature obtained in the context of the2100 4130 6580 1230 1990 2690
same model but with zero concentration of dimers.
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194 A. V. Emelyanenko and M. A. Osipov

As a result, the transition temperature is indeed expected The decrease of the nematic± isotropic transition
temperature with the increasing dipole obtained in theto decrease with increasing molar fraction of dimers.

For intermediate values of dipole d * both tendencies present model in the case of large dipoles, enables one to
understand why a destabilization of the nematic phasebalance each other and the transition temperature reaches

a maximum. has been observed in computer simulations of the nematic
phase composed of hard spherocylinders with centralThe dotted curve on ® gure 3 presents the dependence

of the transition temperature on the value of the dipole longitudinal dipoles [19]. This tendency contradicts the
results of early theories [16± 18] and is related to themoment calculated in the context of the same model

but with zero concentration of dimers. In this case the increasing concentration of dimers. For su� ciently large
monomer dipole moments, the dimers appear to be lesstransition temperature grows monotonically with the

increasing dipole moment for all values of the dipole. mesogenic then monomers. More exactly, the arti® cial
nematic phase composed of pure monomers should haveThis behaviour is similar to that obtained earlier by

one of the authors [18] using the two particle cluster a higher transition temperature compared with that for
the phase composed of pure dimers (provided the totalapproximation. We note that for small dipoles the

existence of dimers does not in¯ uence the qualitative volume fraction of particles is the same in both phases).
We note also that the two tendencies, i.e. a growth ofbehaviour of the transition temperature. At the same

time, some quantitative di� erence exists. In particular, TNI for small dipoles and a decrease of TNI for large ones,
partially compensate each other. As a result one can seethe formation of dimers results in an increase of the

transition temperature in this domain. We will return to in ® gure 3 that the absolute change of the transition
temperature appears to be relatively small. This explainsthis interesting point below.

(a)

(c)

(b)

(d)

Figure 4. Temperature variation of the monomer fraction p in the vicinity of the nematic± isotropic phase transition for di� erent
values of the dimensionless molecular dipole d*.
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195In¯ uence of dimerization on N± I transition

why practically no e� ect of the molecular dipoles on TNI

has been observed in a computer simulation of the polar
Gay± Berne nematic [21].

The temperature variation of the relative number den-
sity of monomers p is presented in ® gure 4 for di� erent
values of the reduced dipole moment. The number
densities of monomers and dimers change discontinuously
at the nematic± isotropic transition point and one can
readily see that for relatively small dipoles, ® gure 4 (a),
the concentration of monomers at the transition temper-
ature is large in the isotropic phase. This means that
it is energetically favourable for the dimers to be in
the nematic phase. This explains why in this regime the
transition temperature is decreased when the formation
of dimers is not taken into account (see the dotted curve
in ® gure 3). By contrast, for high values of the reduced
dipole the concentration of monomers is higher in the
nematic phase and therefore the dimers prefer to be in
the isotropic phase, see ® gures 4 (c) and 4 (d ). In this
domain the dimers appear to be less mesogenic than
monomers.

It is also interesting to consider the temperature
variation of the concentration of monomers at the point
where the dotted curve crosses the solid one in ® gure 3.
At this point the transition temperature is insensitive
to the existence or otherwise of the dimers. One can
also see from ® gure 4 (b) that the concentration of mono-
mers is practically the same in the coexisting nematic
and isotropic phases. Thus, for the corresponding value

(a)

(b)

of the dipole moment, the dimers do not have any Figure 5. Temperature variation of the nematic order
preference and as a result they do not in¯ uence the parameter S1 for monomers (a) and S2 for dimers (b).
nematic± isotropic transition temperature.

Finally in ® gure 5 we show the temperature variation
of the nematic order parameter S1 for monomers, complicated resummations of the diverging expansion
® gure 5 (a), and the order parameter S2 for dimers, series. We expect that the same model can also be used
® gure 5 (b). We note that the absolute value and the to calculate the coexisting densities of the nematic and
temperature dependence of the monomer order para- isotropic phases in the athermal system of hard dipolar
meter do not di� er signi® cantly from that obtained in rods that actually has been simulated by McGrother
the usual Maier± Saupe theory. At the same time the et al. [19, 20]. The corresponding work is in progress.
order parameter of dimers is slightly higher (for this Permanent molecular dipoles are known to have a
value of the e� ective dipole). strong e� ect on the properties of smectic phases. In

The results of this paper indicate that the properties particular, the formation of dimers is known to be very
of strongly polar nematics can at least qualitatively be important in the phase transition from the smectic A to
described in the context of the present model that accounts the re-entrant nematic phase [26]. The present model
for the monomer± dimer equilibrium. The advantage of can be generalized to include the nematic± smectic A
this model lies in its simplicity. The strongest short phase transition; the concentration of dimers can then be
range dipole± dipole correlations between monomers are independently calculated in the smectic and re-entrant
accounted for by assuming the nematic phase to be a phases.
mixture of monomers and dimers. The concentration of
dimers is then determined self-consistently and strongly One of the authors (M.A.O) is grateful to George
depends on the value of the dipole. In this model, Jackson for numerous stimulating discussions. A.V.E. is
reasonable results can be obtained without going too far grateful to A. R. Khokhlov and other members of the

Polymer Physics Chair at the Department of Physics ofbeyond the mean-® eld approximation and performing

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
3
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



196 A. V. Emelyanenko and M. A. Osipov

the Moscow State University for support and assistance.
This work has been supported by INTAS (Grant
No. 94-4078) and the Russian Fundamental Research
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Appendix A

T he dimer bond energy
In the case of hard spherocylinders with central

longitudinal dipoles the dimer is composed of two sphero-
cylinders with antiparallel dipoles located side by side, in
their minimum energy con® guration. The e� ective bond
energy E of N dimers in the volume V (see §2) is
expressed as:

E =
1

4p
r P H (R12 Õ j12 )CexpA Õ

U dd (1, 2 )

kT B Õ 1D Figure 6. Local coordinate system with the z-axis parallel to
the dipole moment d1 of the ® rst spherocylinder in the
dimer pair.Ö d2

a1 d3
R12 d2

a2 (A1)

where

U dd (1, 2 )=
1

R
3
12 Cd1 d2 Õ

3 (d1 R12 )(d2 R12 )

R
2
12 D . (A2) dipole-dipole interaction potential:

In the case of large dipoles, the exponent under the U dd # Õ
d

2

D
3C1 Õ 3j Õ (h12 Õ p)

2 Õ 3 Ah Õ
p

2 B
2

integral in equation (A1) has a sharp maximum at
the minimum energy con® guration that corresponds

+3 (h12 Õ p)Ah Õ
p

2 B cos(Q12 Õ Q)D . (A3)to a1 = Õ a2 , (R12 ¯ a1 )= (R12 ¯ a2 )= 0 and R 12 = D .
Taking this into account, we estimate the integral in
equation (A1) by the saddle point method. Introducing the parameter m= d

2
/kT D

3 we obtain
Let us de® ne the molecular coordinate system with

the z-axis parallel to the dipole moment of the ® rst E # rD
3 P2

0
dj P p

0
dh sin h P p

0
dh12 sin h12 P 2 p

0
dQ

molecule as shown in ® gure 6:

Ö P 2 p

0
dQ12 expGmC1 Õ 3j Õ (h12 Õ p)

2 Õ 3 Ah Õ
p

2 B
2

d1 = d A0

0

1 B d2 = d Asin h12 cos Q12

sin h12 sin Q12

cos h12 B +3 (h12 Õ p)Ah Õ
p

2 B cos (Q12 Õ Q)D H
# 2prD

3 1

3m
exp (m) P p

0
dh sin h P p

0
dh12 sin h12R12 = R12 Asin h cos Q

sin h sin Q

cos h B .

Ö P 2 p

0
dQ expGmC Õ (h12 Õ p)

2 Õ 3 Ah Õ
p

2 B
2

Nearby the minimum energy con® guration one can
use the following approximations:

+3 (h12 Õ p)Ah Õ
p

2 B cos QD Hsin h12 # (p Õ h12 ) cos h12 # Õ 1 + (h12 Õ p)
2

sin h# 1 Õ Ah Õ
p

2 B
2

cos h# Ap

2
Õ hB = 4p

2
rD

3 1

3m
exp (m) P p

0
dh sin h P p

0
dh12 sin h12

R 12 # D (1 +j )

Ö expGmC Õ (h12 Õ p)
2 Õ 3 Ah Õ

p

2 B
2 D Hwhere h12 � p, h � p/2, j � 0.

Let us keep only terms ~(h12 Õ p)i (h Õ p/2)j jk in
U dd (1, 2), where i + j +2k < 2 . Then one obtains from Ö J 0C3 im(h12 Õ p)Ah Õ

p

2 BDequation (A2) the following simpli® ed expression for the
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197In¯ uence of dimerization on N± I transition

where J 0 is the Bessel function of zero order. In our case where we have taken into account that the dispersion
interaction potential between a dimer and a monomerJ 0 [3im(h12 Õ p)(h Õ p/2)]# 1 and therefore we obtain

the following estimate for the e� ective bond energy and between two dimers depends on the short axis b of
the dimer.

We actually have to obtain some expressions for the
E # 4p

2
rD

3 1

3m
exp(m) P p

0
dh12 sin h12 exp[ Õ m(h12 Õ p)

2] coe� cients J
ij
0 and J

ij
2 . For this purpose let us ® rst

consider the integral over the absolute value R 12 and b2

in equation (B1). It is convenient to de® ne the following
Ö P p

0
dh sin h expC Õ 3mAh Õ

p

2 B
2 D functions:

# p
2
rD

3 4

3m
exp(m) P p

0
dh12 [p Õ h12 ] exp[Õ m(h12 Õ p)

2] Yij (a1 , u , a2 ) ;
1

4pD
3
k P H (R12 Õ j12 )

Ö U
disp
ij (1 , 2 )R

2
12 dR12 d2

b2 . (B2)
Ö P p

0
dhC1 Õ Ah Õ

p

2 B
2 D expC Õ 3mAh Õ

p

2 B
2 D Now one can express the coe� cients A

disp
ij as

# p
2
rD

3 4

3m
exp(m) P2

0
x exp[Õ mx

2] dx

A
disp
ij =

WD
3

VT P f
(j )

(a2 ¯ n)Yij (a1 , u , a2 ) d2
u d2

a2 .

Ö P2

Õ 2
exp[Õ 3my

2] dy (B3)

The functions Yij (a1 , u, a2 ) depend on the orientations
=

2p
2
WD

3

3m
2
V A p

3mB
1/2

exp(m). (A4) of the long axes of the particles and on the orientation of
the intermolecular vector. We use the same interpolation
expression for Yij as in equation (26):The expression (A4) is expected to be correct when

m= (d * )2 /T >1 . We note that this condition is satis® ed
Yij = a¾ij + (b ¾1 )ij P 2 (a1 ¯ u)+ (b ¾2 )ij P2 (a2 ¯ u)

for strongly polar mesogenic molecules.

+ c ¾ij P2 (a1 ¯ a2 )+d ¾ij C 9

2
(a1 ¯ u)(a2 ¯ u)(a1 ¯ a2 )

Appendix B

Dispersion interaction between monomers and dimers in Õ
3

2
(a1 ¯ u)

2 Õ
3

2
(a2 ¯ u)

2 Õ
3

2
(a1 ¯ a2 )

2 +1D . (B4)
the context of the site ± site interaction model

The coupling constants J
ij
0 , J

ij
2 for an interaction

Substituting equation (B4) into (B3) one obtains thepotential between a monomer and a dimer and between
following expression for the coe� cients J

ij
0 and J

ij
2 :two dimers can be calculated using the simple site± site

interaction model, where a monomer is composed of 5
spherical sites, ® gure 2 (a). The dimer is then composed J

ij
0 = 4p

WD
3

V

1

T
a¾ij (B5)

of 10 interaction sites, ® gure 2 (b). Each interaction centre
of a particle (monomer or dimer) interacts with each

J
ij
2 = 4p

WD
3

V

1

T
c ¾ij . (B6)site of another particle via the Lennard± Jones potential

e0 [(D / r)12 Õ (D / r)6 ], where D is the diameter of the site.
The total interaction potential U

disp
ij (i, j= 1, 2) is a Now we consider the coe� cients a¾ij and c ¾ij in

double sum over all corresponding sites of the two equations (B5) and (B6) as free parameters and require
particles. that equation (B4) for Yij should yield exact results for

We now expand the e� ective dispersion one particle the ® ve orientations of the long axes a1 and a2 with
potentials A

disp
ij in Legendre polynomials and retain the respect to the vector u, presented in ® gure 1. After some

® rst two terms: algebra one obtains the following result for a¾ij and c ¾ij :

A
disp
ij =

W

4pVkT P f
(j )

(a2 ¯ n)H (R12 Õ j12 ) C a¾ij =
2

9 AY
ij
1 +

1

2
Y

ij
2 +Y

ij
3 +Y

ij
4 +Y

ij
5 B

c ¾ij =
2

9
(2Y

ij
1 +Y

ij
2 Õ Y

ij
3 Õ Y

ij
4 Õ Y

ij
5 ).

(B7)
Ö U

disp
ij (1 , 2 ) d3

R12 d2
a2 d2

b2

= J
ij
0 +J

ij
2 Sj P 2 ((a1 ¯ n))+ ¼ (B1)
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198 A. V. Emelyanenko and M. A. Osipov

The parameters Y
ij
n (where index n speci® es the The coe� cients Y

ij
n can be expressed as integrals over

the functions Z
ij (b1 , u, b2 ):number of orientations of the long axesÐ see ® gure 1

can be determined if one considers the integral over the
short axis b2 for a dimer in, for example, equation (B2). Y

ij
n =

1

4p P Z
ij
n (b1 , u , b2 ) d2

b2 . (B9)
The integral is to be evaluated separately for all 5 ® xed
orientations. It is again convenient to de® ne the functions:

If the interaction particles are monomers (i = 1, j = 1),
the integration in equation (B9) yields a simple relation:

Z
ij
n (b1 , u , b2 ) ;

1

D
3
k P H (R12 Õ j12 )U

disp
ij (1, 2 )R

2
12 dR 12

Y
11
n = Z

11
n . (B10)

(B8) The quantities Z
11
n can now be determined by integrating

numerically the site± site potential over the absolute valuefor n orientations of long axes.
We note that the functions Z

ij
n do not depend on a1 R 12 , equation (B8), for every orientation n , presented

in ® gure 1.and a2 because the orientation of the long axes is ® xed.

Figure 7. The set of relative orien-
tations of a monomer and a
biaxial dimer used in the calcu-
lations of the coe� cients in
equation (B11).
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199In¯ uence of dimerization on N± I transition

For a monomer and a dimer (i = 1, j = 2) the functions The resulting values of Y
11
n , Y

12
n and Y

22
n were sub-

stituted into equations (B7). The coe� cients J
ij
0 , J

ij
2 ,Z

12
n depend on the short axis of dimer b2 . We approximate

Z
12
n (b1 , u, b2 ) by the following simple polynomials: obtained for e0 /k = 5350 K, are presented in table 2.
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